
DI (Dependency injection) or IOC (Inverse of Control)a.
AOP (aspect-oriented programming)b.

Spring Core Features:1.

BeanFactorya.
ApplicationContextb.

Bean Factory2.

Bean Life cycle3.

Step Description

Instantiate1. Spring instantiates the bean.

2. Populate properties. Spring injects the bean’s properties.

3. Set bean name. If the bean implements BeanNameAware, Spring passes the bean’s
ID to setBeanName().

4. Set bean factory. If the bean implements BeanFactoryAware, Spring passes the bean
factory to setBeanFactory().

4.5. Set application context if the bean implements the ApplicationContextAware
interface, the setApplicationContext() method is called.

5. Postprocess
(before initialization).

If there are any BeanPostProcessors, Spring calls their
postProcessBeforeInitialization() method.

6. Initialize beans. If the bean implements InitializingBean, its afterPropertiesSet()
method will be called. If the bean has a custom init method
declared, the specified initialization method will be called.

7. Postprocess
(after initialization).

If there are any BeanPostProcessors, Spring calls their
postProcessAfterInitialization() method.

8. Bean is ready to use. At this point the bean is ready to be used by the application and
will remain in the bean factory until it is no longer needed.

9. Destroy bean. If the bean implements DisposableBean, its destroy()
method will be called. If the bean has a custom destroy-method
declared, the specified method will be called.

Wiring propertiesa.
Wiring through constructorb.

Bean Creation4.

Injecting simple valuesa.
Referencing other beansb.
Wiring collectionsc.
Wiring Nulld.

Bean value injection5.

By name - Attempts to find a bean in the container whose name (or ID) is the same as the name of the property being wired. If a matching bean is not found, the property will
remain unwired.

a.

By Type - Attempts to find a single bean in the container whose type matches the type of the property being wired. If no matching bean is found, the property will not be wired.
If more than one bean matches, an org.springframework.beans.factory.UnsatisfiedDependencyExceptionwill be thrown.

b.

Constructor - Tries to match up one or more beans in the container with the parameters of one of the constructors of the bean being wired. In the event of ambiguous beans or
ambiguous constructors, an org.springframework.beans.factory.UnsatisfiedDependencyException will be thrown.Autowiring by constructor shares the same limitations as
byType.

c.

Autodetect - Attempts to autowire by constructor first and then using byType. Ambiguity is handled the same way as with constructor and byType wiring.d.

Auto wiring6.

Bean scoping7.

Scoping is new to Spring 2.0. Prior to Spring 2.0, you would set a <bean>’s singleton attribute to false to make it a prototype bean.

Create bean using factory methoda.
Example: <bean id="<bean name>" class="<class>" factory-method="getInstance"/>
Initializing and destroying beansb.
Example: <bean id="<bean name>" class="<class>" init-method="customInit" destroy-method="customDestroy" />
Defaulting init-method and destroy-methodc.
Example: <beans … default-init-method="tuneInstrument" default-destroy-method="cleanInstrument" />
InitializingBean and DisposableBeand.
implement two special Spring interfaces: afterPropertiesSet and destroy.

Controlling bean creation8.

Declaring parent and child beans9.

■ parent—Indicates the id of a <bean> that will be the parent of the <bean> with the parent attribute. The parent attribute is to <bean> what extends is to a Java class.

■ abstract—If set to true, indicates that the <bean> declaration is abstract. That is, it should never be instantiated by Spring.

To accommodate sub-beaning, the <bean> element provides two special attributes:

SpringLearn
ing

Source Code

Spring Features
Monday, March 31, 2014 11:23

 Learning Notes Page 1

■ abstract—If set to true, indicates that the <bean> declaration is abstract. That is, it should never be instantiated by Spring.

Bean name aware: implement BeanNameAware and override setBeanName(Stirng name)a.
Bean factory aware: implement BeanFactoryAware and override setBeanFactory(BeanFactory beanFactory)b.
Application context aware: implement ApplicationContextAware and override setApplicationContext(ApplicationContext applicationContext)c.

Bean Name aware, Bean factory ware and Application context aware10.

Method injection11.
Example:

 Learning Notes Page 2

