
Official Documentation: https://pythonhosted.org/setuptools/#1.

Examplea.

Meta-Datai.

Package_dir

Packages

List whole packagesii.

py_modules = ['mod1', 'pkg.mod2']

Listing individual modules: list all modules rather than listing packagesiii.

ext_modules=[Extension('foo', ['foo.c'])]

Describing extension modulesiv.

scripts=['scripts/xmlproc_parse', 'scripts/xmlproc_val']

Installing Scripts: if the first line of the script starts with #! and contains the word “python”, the Distutils will adjust the first line to refer to the current interpreter location. 
By default, it is replaced with the current interpreter location.

v.

include_package_data: If set to True, this tells setuptools to automatically include any data files it finds inside your package directories, that are either under CVS or 
Subversion control, or which are specified by your MANIFEST.in file. For more information, see the section below on Including Data Files.



exclude_package_data: A dictionary mapping package names to lists of glob patterns that should be excluded from your package directories. You can use this to trim 
back any excess files included by include_package_data. For a complete description and examples, see the section below on Including Data Files.



package_data: A dictionary mapping package names to lists of glob patterns. For a complete description and examples, see the section below on Including Data Files. 
You do not need to use this option if you are using include_package_data, unless you need to add e.g. files that are generated by your setup script and build process. 
(And are therefore not in source control or are files that you don’t want to include in your source distribution.)



zip_safe: A boolean (True or False) flag specifying whether the project can be safely installed and run from a zip file. If this argument is not supplied, the bdist_egg 
command will have to analyze all of your project’s contents for possible problems each time it builds an egg.



install_requires: A string or list of strings specifying what other distributions need to be installed when this one is. See the section below on Declaring Dependencies 
for details and examples of the format of this argument.



entry_points: A dictionary mapping entry point group names to strings or lists of strings defining the entry points. Entry points are used to support dynamic discovery 
of services or plugins provided by a project. See Dynamic Discovery of Services and Plugins for details and examples of the format of this argument. In addition, this 
keyword is used to support Automatic Script Creation.



New Features in Setuptools:vi.

Setup keywordsb.

Building and Distributing Packages with Setuptools2.

Setuptools Learning
Tuesday, April 01, 2014 14:45

   Learning Notes Page 1    

https://pythonhosted.org/setuptools/#
https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins


extras_require: A dictionary mapping names of “extras” (optional features of your project) to strings or lists of strings specifying what other distributions must be 
installed to support those features. See the section below on Declaring Dependencies for details and examples of the format of this argument.



setup_requires: A string or list of strings specifying what other distributions need to be present in order for the setup script to run. setuptools will attempt to obtain 
these (even going so far as to download them using EasyInstall) before processing the rest of the setup script or commands. This argument is needed if you are using 
distutils extensions as part of your build process; for example, extensions that process setup() arguments and turn them into EGG-INFO metadata files.



(Note: projects listed in setup_requires will NOT be automatically installed on the system where the setup script is being ru n. They are simply downloaded to the 
setup directory if they’re not locally available already. If you want them to be installed, as well as being available when t he setup script is run, you should add 
them to install_requires and setup_requires.)
dependency_links: A list of strings naming URLs to be searched when satisfying dependencies. These links will be used if needed to install packages specified by 
setup_requires or tests_require. They will also be written into the egg’s metadata for use by tools like EasyInstall to use when installing an .egg file.



namespace_packages: A list of strings naming the project’s “namespace packages”. A namespace package is a package that may be split across multip le project 
distributions. For example, Zope’s zope package is a namespace package, because subpackages like zope.interface and zope.publ isher may be distributed separately. 
The egg runtime system can automatically merge such subpackages into a single parent package at runtime, as long as you decla re them in each project that contains 
any subpackages of the namespace package, and as long as the namespace package’s __init__.py does not contain any code other than a namespace declaration. 
See the section below on Namespace Packages for more information.



test_suite: A string naming a unittest.TestCase subclass (or a package or module containing one or more of them, or a method of such a subclass), or naming a 
function that can be called with no arguments and returns a unittest.TestSuite. If the named suite is a module, and the module has an additional_tests() function, it is 
called and the results are added to the tests to be run. If the named suite is a package, any submodules and subpackages are recursively added to the overall test 
suite. Specifying this argument enables use of the test command to run the specified test suite, e.g. via setup.py test. See the section on the test command below for 
more details.



tests_require: If your project’s tests need one or more additional packages besides those needed to install it, you can use this option to specify them. It should be a 
string or list of strings specifying what other distributions need to be present for the package’s tests to run. When you run the test command, setuptools will attempt 
to obtain these (even going so far as to download them using EasyInstall). Note that these required projects will not be installed on the system where the tests are 
run, but only downloaded to the project’s setup directory if they’re not already installed locally.



test_loader: If you would like to use a different way of finding tests to run than what setuptools normally uses, you can specify a module name and class name in this 
argument. The named class must be instantiable with no arguments, and its instances must support the loadTestsFromNames() method as defined in the Python 
unittest module’s TestLoader class. Setuptools will pass only one test “name” in the names argument: the value supplied for the test_suite argument. The loader you 
specify may interpret this string in any way it likes, as there are no restrictions on what may be contained in a test_suite string. The module name and class name 
must be separated by a :. The default value of this argument is "setuptools.command.test:ScanningLoader". If you want to use the default unittest behavior, you can 
specify "unittest:TestLoader" as your test_loader argument instead. This will prevent automatic scanning of submodules and subpackages. The module and class you 
specify here may be contained in another package, as long as you use the tests_require option to ensure that the package containing the loader class is available 
when the test command is run.



eager_resources: A list of strings naming resources that should be extracted together, if any of them is needed, or if any C extensions included in the project are 
imported. This argument is only useful if the project will be installed as a zipfile, and there is a need to have all of the listed resources be extracted to the filesystem 
as a unit. Resources listed here should be ‘/’-separated paths, relative to the source root, so to list a resource foo.png in package bar.baz, you would include the 
string bar/baz/foo.png in this argument. If you only need to obtain resources one at a time, or you don’t have any C extensions that access other files in the project 
(such as data files or shared libraries), you probably do NOT need this argument and shouldn’t mess with it. For more details on how this argument works, see the 
section below on Automatic Resource Extraction.



use_2to3: Convert the source code from Python 2 to Python 3 with 2to3 during the build process. See Supporting both Python 2 and Python 3 with Setuptools for 
more details.



convert_2to3_doctests: List of doctest source files that need to be converted with 2to3. See Supporting both Python 2 and Python 3 with Setuptools for more details.

use_2to3_fixers: A list of modules to search for additional fixers to be used during the 2to3 conversion. See Supporting both Python 2 and Python 3 with Setuptools 
for more details. 



Development modec.
use the setup.py develop command. It works very similarly to setup.py install or the EasyInstall tool, except that it doesn’t actually install anything. Instead, it creates a 
special .egg-link file in the deployment directory, that links to your project’s source code. And, if your deployment directory is Python’s site-packages directory, it will also update 
the easy-install.pth file to include your project’s source code, thereby making it available on sys.path for all programs using that Python installation.

Setup.py Command Usaged.

   Learning Notes Page 2    

https://pythonhosted.org/setuptools/setuptools.html#namespace-packages
https://pythonhosted.org/setuptools/setuptools.html#test


   Learning Notes Page 3    


