Setuptools Learning

Tuesday, April 01, 2014 14:45

1. Official Documentation: https://pythonhosted.org/setuptools/#

2. Building and Distributing Packages with Setuptools
a. Example
from setuptools import setup, find_packages

setup(name="cryptc’,
version="1.8",

packages=find_packages(),

install_requires = ['plumbum>=1.4.8"],

package data = {

T [T*otxt', "*.doc'],

‘otherFiles': ["*.type'],

3

exclude package data = { "': ['README.txt'] },

zip_safe=True,

author =
author_email
descriptio

isca.com”,
his is Crypto Package",

license = "

keywords = "crypto package”,

url = "http://www.cisco.com",

)
b. Setup keywords
i. Meta-Data
Meta-Data Description Value Notes

e name of the package short string (1)
version version of this release short string (1)
author package author’'s name short string (3)
ETENEE_smetl email address of the package author email address (3)
maintaines package maintainer's name short string @)
maintainer_email email address of the package maintainer email address 3)
=l home page for the package URL (1)
deacription short, summary description of the package short string
long_description longer description of the package long string (5)
download url location where the package may be downloaded | URL (4)
classifiers a list of classifiers list of strings (4)
platforms a list of platforms list of strings
license license for the package short string (6)

ii. List whole packages
® Package_dir
® Packages
iii. Listing individual modules: list all modules rather than listing packages
® py_modules = ['mod1’, 'pkg.mod2']
iv. Describing extension modules
® ext_modules=[Extension('foo’, ['foo.c'])]
v. Installing Scripts: if the first line of the script starts with #! and contains the word “python”, the Distutils will adjust the first line to refer to the current interpreter location.
By default, it is replaced with the current interpreter location.
@ scripts=['scripts/xmlproc_parse', 'scripts/xmlproc_val']
vi. New Features in Setuptools:
® include_package_data: If set to True, this tells setuptools to automatically include any data files it finds inside your package directories, that are either under CVS or
Subversion control, or which are specified by your MANIFEST.in file. For more information, see the section below on Including Data Files.
® exclude_package_data: A dictionary mapping package names to lists of glob patterns that should be excluded from your package directories. You can use this to trim
back any excess files included by include_package_data. For a complete description and examples, see the section below on Including Data Files.
® package_data: A dictionary mapping package names to lists of glob patterns. For a complete description and examples, see the section below on Including Data Files.
You do not need to use this option if you are using include_package_data, unless you need to add e.g. files that are generated by your setup script and build process.
(And are therefore not in source control or are files that you don’t want to include in your source distribution.)
® zip_safe: A boolean (True or False) flag specifying whether the project can be safely installed and run from a zip file. If this argument is not supplied, the bdist_egg
command will have to analyze all of your project’s contents for possible problems each time it builds an egg.
® install_requires: A string or list of strings specifying what other distributions need to be installed when this one is. See the section below on Declaring Dependencies
for details and examples of the format of this argument.
® entry_points: A dictionary mapping entry point group names to strings or lists of strings defining the entry points. Entry points are used to support dynamic discovery
of services or plugins provided by a project. See Dynamic Discovery of Services and Plugins for details and examples of the format of this argument. In addition, this
keyword is used to support Automatic Script Creation.

Learning Notes Page 1

https://pythonhosted.org/setuptools/#
https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins

EntryPoints provide a L b d object name i ion and name-based direct
objectimpert mechanism (implemented by the setuptools package).

They associate names of Python abjects with free-form identifiers. So any other code using the same
Python installation and knowing the identifier can access an object with the associated name, no matter
where the object is defined. The associated names can be any names existing in a Python module; for
example name of a class, function or variable. The entry point mechanism does not care whatthe name
refers to, as long as it is importable

As an example, lets use (the name of) a function, and an imaginary python madule with a fully-qualified
name ‘myns.mypkg.mymadule*

def the_function():
“function whose name is 'the_function', in ‘mymodule’ module”
print "helle from the_function®

Entry points are registered via an entry points declaration in setup.py. To register the_function under
entrypoint called 'my_ep_func:

entry_points = {
"my_ep_group_id*: [
"my_ep_func = myns.mypkg.mymodule:the_function’
1
I

As the example shows, entry points are grouped; there's corresponding APl to look up all entry peints
belonging to a group (example below).

Upon a package installation (ie. running ‘python setup_py install’), the above declaration is parsed by
setuptools. Itthen writes the parsed information in special file After that, the pkg_resources APl (part of
setuptools) can be used to look up the entry point and access the object(s) with the associated name(s):

import pkg_resources

named_objects = []
for ep in pkg_resources.iter_entry_points(group="my_sp_group_id'):
namsd_objects.append(ep.load())

Here, setuptaols read the entry point infarmation that was written in special files. It found the entry paint,
imported the madule (myns.mypkg.mymadule}, and retrieved the_function defined there, upan call to
pkg_resources.load().

Assuming there were no other entry paint registrations for the same group id, calling the_function would
then be simple:

>>> named_objects[@]()
helle from the_function

Thus, while perhaps a bit difficult to grasp atfirst, the entry point mechanism is actually quite simple to
use. It provides an useful tool for pluggable Python software development

® extras_require: A dictionary mapping names of “extras” (optional features of your project) to strings or lists of strings specifying what other distributions must be
installed to support those features. See the section below on Declaring Dependencies for details and examples of the format of this argument.

® setup_requires: A string or list of strings specifying what other distributions need to be present in order for the setup script to run. setuptools will attempt to obtain
these (even going so far as to download them using EasylInstall) before processing the rest of the setup script or commands. This argument is needed if you are using
distutils extensions as part of your build process; for example, extensions that process setup() arguments and turn them into EGG-INFO metadata files.

(Note: projects listed in setup_requires will NOT be automatically installed on the system where the setup script is being ru n. They are simply downloaded to the
setup directory if they’re not locally available already. If you want them to be installed, as well as being available when t he setup script is run, you should add
them to install_requires and setup_requires.)

® dependency_links: A list of strings naming URLs to be searched when satisfying dependencies. These links will be used if needed to install packages specified by
setup_requires or tests_require. They will also be written into the egg’s metadata for use by tools like EasylInstall to use when installing an .egg file.

® namespace_packages: A list of strings naming the project’s “namespace packages”. A namespace package is a package that may be split across multip le project
distributions. For example, Zope's zope package is a namespace package, because subpackages like zope.interface and zope.publisher may be distributed separately.

The egg runtime system can automatically merge such subpackages into a single parent package at runtime, as long as you declare them in each project that contains
any subpackages of the namespace package, and as long as the namespace package’s __init__.py does not contain any code other than a namespace declaration.
See the section below on Namespace Packages for more information.

® test_suite: A string naming a unittest.TestCase subclass (or a package or module containing one or more of them, or a method of such a subclass), or naming a
function that can be called with no arguments and returns a unittest.TestSuite. If the named suite is a module, and the module has an additional_tests() function, it is
called and the results are added to the tests to be run. If the named suite is a package, any submodules and subpackages are recursively added to the overall test
suite. Specifying this argument enables use of the test command to run the specified test suite, e.g. via setup.py test. See the section on the test command below for
more details.

® tests_require: If your project’s tests need one or more additional packages besides those needed to install it, you can use this option to specify them. It should be a
string or list of strings specifying what other distributions need to be present for the package’s tests to run. When you run the test command, setuptools will attempt
to obtain these (even going so far as to download them using Easylnstall). Note that these required projects will not be installed on the system where the tests are
run, but only downloaded to the project’s setup directory if they’re not already installed locally.

® test_loader: If you would like to use a different way of finding tests to run than what setuptools normally uses, you can specify a module name and class name in this
argument. The named class must be instantiable with no arguments, and its instances must support the loadTestsFromNames() method as defined in the Python
unittest module’s TestLoader class. Setuptools will pass only one test “name” in the names argument: the value supplied for the test_suite argument. The loader you
specify may interpret this string in any way it likes, as there are no restrictions on what may be contained in a test_suite string. The module name and class name
must be separated by a :. The default value of this argument is "setuptools.command.test:ScanninglLoader". If you want to use the default unittest behavior, you can
specify "unittest:TestLoader" as your test_loader argument instead. This will prevent automatic scanning of submodules and subpackages. The module and class you
specify here may be contained in another package, as long as you use the tests_require option to ensure that the package containing the loader class is available
when the test command is run.

® eager_resources: A list of strings naming resources that should be extracted together, if any of them is needed, or if any C extensions included in the project are
imported. This argument is only useful if the project will be installed as a zipfile, and there is a need to have all of the listed resources be extracted to the filesystem
as a unit. Resources listed here should be ‘/’-separated paths, relative to the source root, so to list a resource foo.png in package bar.baz, you would include the
string bar/baz/foo.png in this argument. If you only need to obtain resources one at a time, or you don’t have any C extensions that access other files in the project

(such as data files or shared libraries), you probably do NOT need this argument and shouldn’t mess with it. For more details on how this argument works, see the
section below on Automatic Resource Extraction.

® use_2to3: Convert the source code from Python 2 to Python 3 with 2to3 during the build process. See Supporting both Python 2 and Python 3 with Setuptools for
more details.

® convert_2to3_doctests: List of doctest source files that need to be converted with 2to3. See Supporting both Python 2 and Python 3 with Setuptools for more details.

use_2to3_fixers: A list of modules to search for additional fixers to be used during the 2to3 conversion. See Supporting both Python 2 and Python 3 with Setuptools
for more details.

c. Development mode
use the setup.py develop command. It works very similarly to setup.py install or the Easylnstall tool, except that it doesn’t actually install anything. Instead, it creates a
special .egg-link file in the deployment directory, that links to your project’s source code. And, if your deployment directory is Python’s site-packages directory, it will also update
the easy-install.pth file to include your project’s source code, thereby making it available on sys.path for all programs using that Python installation.

d. Setup.py Command Usage

Learning Notes Page 2

https://pythonhosted.org/setuptools/setuptools.html#namespace-packages
https://pythonhosted.org/setuptools/setuptools.html#test

Standard commands:

build build everything needed to install

build py "build" pure Python modules (copy to build directory)
build ext build C/C++ extensions (compile/link to build directory)
build _clib build C¢/C++ libraries used by Python extensions
build_scripts "build" scripts (copy and fixup #! line}

clean clean up temporary files from 'build' command

install install everything from build directory

install_lib install all Python modules (extensions and pure Python)

install headers install C/C++ header files
install scripts install scripts (Python or otherwise)

install data install data files

sdist create a source distribution (tarball, zip file, etc.)
register register the distribution with the Python package index
bdist create a built (binary) distribution

bdist_dumb create a "dumb" built distribution

bdist_rpm create an RPM distribution

bdist_wininst create an executable installer for MS Windows

upload upload binary package to PyPI

Extra commands:

rotate delste older distributions, keeping N newest files
develop install package in 'development mode’'
setopt set an option in setup.cfg or another config file
saveopts save supplied options to setup.cfg or other config file
egg_info create a distribution's .egg-info directory
upload sphinx Upload Sphinx documentation to PyPI
install egg info 1Install an .egg-info directory for the package
alias define a shortcut to invoke one or more commands
easy install Find/get/install Python packages
bdist_egg create an "egg" distribution
test run unit tests after in-place build
build_sphinx Build Sphinx documentation

usage: setup.py [global opts] cmdl [cmdl_opts] [cmdZ [cmdZ opts] ...1]
or: setup.py —-help [cmdl cmdZ ...]

or: setup.py --help-commands
or: setup.py cmd --help

Learning Notes Page 3

